rhoadley.net music research software blogs
aru seminars m&t critski focm1a cmc circuit bending mic2b sensor technology comp 3 sonic art major project
youtube vimeo facebook
Resources: Bioacoustics Jitter MaxMSP OSC Physical PD CBHH sTech SuperCollider C/Xcode
sTech Resources: Home Blog Forum Examples Projects Tasks Tutorials
Task 5 | Name: Servos | Set: w3i | Due: Monday 19th December 2016 | Weighting: assessable/recommended (10%) | Courses: stech |
Prev Task: Auduino | Next Task: Ping - Joining Code | ||||
Task Summary | All stech tasks |
From: http://www.arduino.cc/playground/Code/PCMAudio
Arduino Code:
/*
* speaker_pcm
*
* Plays 8-bit PCM audio on pin 11 using pulse-width modulation (PWM).
* one speaker terminal to pin 11, one to ground.
* For Arduino with Atmega168 at 16 MHz.
*
* Uses two timers. The first changes the sample value 8000 times a second.
* The second holds pin 11 high for 0-255 ticks out of a 256-tick cycle,
* depending on sample value. The second timer repeats 62500 times per second
* (16000000 / 256), much faster than the playback rate (8000 Hz), so
* it almost sounds halfway decent, just really quiet on a PC speaker.
*
* Takes over Timer 1 (16-bit) for the 8000 Hz timer. This breaks PWM
* (analogWrite()) for Arduino pins 9 and 10. Takes Timer 2 (8-bit)
* for the pulse width modulation, breaking PWM for pins 11 & 3.
*
* References:
* http://www.uchobby.com/index.php/2007/11/11/arduino-sound-part-1/
* http://www.atmel.com/dyn/resources/prod_documents/doc2542.pdf
* http://www.evilmadscientist.com/article.php/avrdac
* http://gonium.net/md/2006/12/27/i-will-think-before-i-code/
* http://fly.cc.fer.hr/GDM/articles/sndmus/speaker2.html
* http://www.gamedev.net/reference/articles/article442.asp
*
* Michael Smith
*/
#include <stdint.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#define SAMPLE_RATE 8000
/*
* The audio data needs to be unsigned, 8-bit, 8000 Hz, and small enough
* to fit in flash. 10000-13000 samples is about the limit.
*
* sounddata.h should look like this:
* const int sounddata_length=10000;
* const unsigned char sounddata_data[] PROGMEM = { ..... };
*
* You can use wav2c from GBA CSS:
* http://thieumsweb.free.fr/english/gbacss.html
* Then add "PROGMEM" in the right place. I hacked it up to dump the samples
* as unsigned rather than signed, but it shouldn't matter.
*
* http://musicthing.blogspot.com/2005/05/tiny-music-makers-pt-4-mac-startup.html
* mplayer -ao pcm macstartup.mp3
* sox audiodump.wav -v 1.32 -c 1 -r 8000 -u -1 macstartup-8000.wav
* sox macstartup-8000.wav macstartup-cut.wav trim 0 10000s
* wav2c macstartup-cut.wav sounddata.h sounddata
*/
#include "sounddata.h"
int ledPin = 13;
int speakerPin = 11;
volatile uint16_t sample;
byte lastSample;
// This is called at 8000 Hz to load the next sample.
ISR(TIMER1_COMPA_vect) {
if (sample >= sounddata_length) {
if (sample == sounddata_length + lastSample) {
stopPlayback();
}
else {
// Ramp down to zero to reduce the click at the end of playback.
OCR2A = sounddata_length + lastSample - sample;
}
}
else {
OCR2A = pgm_read_byte(&sounddata_data[sample]);
}
++sample;
}
void startPlayback()
{
pinMode(speakerPin, OUTPUT);
// Set up Timer 2 to do pulse width modulation on the speaker
// pin.
// Use internal clock (datasheet p.160)
ASSR &= ~(_BV(EXCLK) | _BV(AS2));
// Set fast PWM mode (p.157)
TCCR2A |= _BV(WGM21) | _BV(WGM20);
TCCR2B &= ~_BV(WGM22);
// Do non-inverting PWM on pin OC2A (p.155)
// On the Arduino this is pin 11.
TCCR2A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
TCCR2A &= ~(_BV(COM2B1) | _BV(COM2B0));
// No prescaler (p.158)
TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
// Set initial pulse width to the first sample.
OCR2A = pgm_read_byte(&sounddata_data[0]);
// Set up Timer 1 to send a sample every interrupt.
cli();
// Set CTC mode (Clear Timer on Compare Match) (p.133)
// Have to set OCR1A *after*, otherwise it gets reset to 0!
TCCR1B = (TCCR1B & ~_BV(WGM13)) | _BV(WGM12);
TCCR1A = TCCR1A & ~(_BV(WGM11) | _BV(WGM10));
// No prescaler (p.134)
TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
// Set the compare register (OCR1A).
// OCR1A is a 16-bit register, so we have to do this with
// interrupts disabled to be safe.
OCR1A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000
// Enable interrupt when TCNT1 == OCR1A (p.136)
TIMSK1 |= _BV(OCIE1A);
lastSample = pgm_read_byte(&sounddata_data[sounddata_length-1]);
sample = 0;
sei();
}
void stopPlayback()
{
// Disable playback per-sample interrupt.
TIMSK1 &= ~_BV(OCIE1A);
// Disable the per-sample timer completely.
TCCR1B &= ~_BV(CS10);
// Disable the PWM timer.
TCCR2B &= ~_BV(CS10);
digitalWrite(speakerPin, LOW);
}
void setup()
{
pinMode(ledPin, OUTPUT);
startPlayback();
}
void loop()
{
while (true);
}
Soundfile Data: Soundfile data ('save as...')
- Try altering the sample rate. What happens and why? - Try editing a copy of the sounddata.h file. What happens and why? - Carefully connect your Arduino to a more powerful amp and speaker and see what you get.
You might also be interested in:
The projects and tasks are designed to help you through the various courses and materials that you'll have to deal with, and also to provide an active and practical element to what could otherwise become a rather dry and technical exercise. Tasks are small exercises - you may be asked to complete one or two per week. Projects are larger and carry a higher percentage of the mark. We will undertake two, three, four or more projects and tasks. The final project is usually an individual choice project, and will be worth significantly more than the others in terms of percentages in your portfolio. We will usually try to set aside a time to perform the projects in a public setting.